Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1378709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694623

RESUMO

To mitigate the continued impact of SARS-CoV-2, influenza A, and influenza B viruses on human health, a smartphone-based point-of-care testing (POCT) system was designed to detect respiratory pathogens through a nucleic acid test. This compact, light-weight, highly automated, and universal system enables the differential diagnosis of SARS-CoV-2, influenza A, and influenza B in approximately 30 min in a single-tube reaction. Numerous hospitals and disease control and prevention center assessed the triple POCT system's detection threshold, sensitivity, specificity, and stability, and have concluded that all the assessments were comparable to those of fluorescent quantitative polymerase chain reaction (PCR)-based testing. The triple POCT system is suitable as an onsite rapid-diagnosis device, as well as for pathogen screening at airports and customs.

2.
Ann Lab Med ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699793

RESUMO

Background: Quantitative detection of glucose-6-phosphate dehydrogenase (G6PD) is commonly done to screen for G6PD deficiency. However, current reference intervals (RIs) of G6PD are unsuitable for evaluating G6PD-activity levels with local populations or associating G6PD variants with hemolysis risk to aid clinical decision-making. We explored appropriate RIs and clinical decision limits (CDLs) for G6PD activity in individuals from Guangzhou, China. Methods: We enrolled 5,852 unrelated individuals between 2020 and 2022 and screened their samples in quantitative assays for G6PD activity. We conducted further investigations, including G6PD genotyping, thalassemia genotyping, follow-up analysis, and statistical analysis, for different groups. Results: In Guangzhou, the RIs for the G6PD activities were 11.20-20.04 U/g Hb in male and 12.29-23.16 U/g Hb in female. The adjusted male median and normal male median (NMM) values were 15.47 U/g Hb and 15.51 U/g Hb, respectively. A threshold of 45% of the NMM could be used as a CDL to estimate the probability of G6PD variants. Our results revealed high hemolysis-risk CDLs (male: <10% of the NMM, female: <30% of the NMM), medium hemolysis-risk CDLs (male: 10%-45% of the NMM, female: 30%-79% of the NMM), and low hemolysis-risk CDLs (male: ≥ 45% of the NMM, female: ≥ 79% of the NMM). Conclusions: Collectively, our findings contribute to a more accurate evaluation of G6PD-activity levels within the local population and provide valuable insights for clinical decision-making. Specifically, identifying threshold values for G6PD variants and hemolysis risk enables improved prediction and management of G6PD deficiency, ultimately enhancing patient care and treatment outcomes.

3.
J Integr Plant Biol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558522

RESUMO

It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.

4.
Cell Death Dis ; 15(4): 260, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609357

RESUMO

Breast cancer has the highest global incidence and mortality rates among all cancer types. Abnormal expression of the Annexin family has been observed in different malignant tumors, including upregulated ANXA9 in breast cancer. We found highly expressed ANXA9 in metastatic breast cancer tissues, which is correlated with breast cancer progression. In vitro, the functional experiments indicated ANXA9 influenced breast cancer proliferation, motility, invasion, and apoptosis; in vivo, downregulation of ANXA9 suppressed breast cancer xenograft tumor growth and lung metastasis. Mechanically, on one side, we found that ANXA9 could mediate S100A4 and therefore regulate AKT/mTOR/STAT3 pathway to participate p53/Bcl-2 apoptosis; on the other side, we found ANXA9 transferred S100A4 from cells into the tumor microenvironment and mediated the excretion of cytokines IL-6, IL-8, CCL2, and CCL5 to participate angiogenesis via self- phosphorylation at site Ser2 and site Thr69. Our findings demonstrate significant involvement of ANXA9 in promoting breast cancer progression, thereby suggesting that therapeutic intervention via targeting ANXA9 may be effective in treating metastatic breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Neoplasias da Mama/genética , Mama , Fosforilação , Regulação para Baixo , Microambiente Tumoral , Proteína A4 de Ligação a Cálcio da Família S100 , Anexinas , Fator de Transcrição STAT3
5.
Food Chem Toxicol ; : 114679, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657942

RESUMO

Acetaminophen is an emerging endocrine disrupting chemical and has been detected in various natural matrices. Numerous studies have documented developmental toxicity associated with prenatal acetaminophen exposure (PAcE). In this study, we established a PAcE Kunming mouse model at different time (middle pregnancy and third trimester), doses (low, middle, high) and courses (single or multi-) to systematically investigate their effects on fetal ovarian development. The findings indicated PAcE affected ovarian development, reduced fetal ovarian oocyte number and inhibited cell proliferation. A reduction in mRNA expression was observed for genes associated with oocyte markers (NOBOX and Figlα), follicular development markers (BMP15 and GDF9), and pre-granulosa cell steroid synthase (SF1 and StAR). Notably, exposure in middle pregnancy, high dose, multi-course resulted in the most pronounced inhibition of oocyte development; exposure in third trimester, high dose and multi-course led to the most pronounced inhibition of follicular development; and in third trimester, low dose and single course, the inhibition of pre-granulosa cell function was most pronounced. Mechanistic investigations revealed that PAcE had the most pronounced suppression of the ovarian Notch signaling pathway. Overall, PAcE caused fetal ovarian multicellular toxicity and inhibited follicular development with time, dose and course differences.

6.
iScience ; 27(4): 109540, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577099

RESUMO

Chronic inflammation is critical for the initiation and progression of type 2 diabetes mellitus via causing both insulin resistance and pancreatic ß cell dysfunction. miR-155, highly expressed in macrophages, is a master regulator of chronic inflammation. Here we show that blocking a macrophage-derived exosomal miR-155 (MDE-miR-155) mitigates the insulin resistances and glucose intolerances in high-fat-diet (HFD) feeding and type-2 diabetic db/db mice. Lentivirus-based miR-155 sponge decreases the level of miR-155 in the pancreas and improves glucose-stimulated insulin secretion (GSIS) ability of ß cells, thus leading to improvements of insulin sensitivities in the liver and adipose tissues. Mechanistically, miR-155 increases its expression in HFD and db/db islets and is released as exosomes by islet-resident macrophages under metabolic stressed conditions. MDE-miR-155 enters ß cells and causes defects in GSIS function and insulin biosynthesis via the miR-155-PDX1 axis. Our findings offer a treatment strategy for inflammation-associated diabetes via targeting miR-155.

7.
STAR Protoc ; 5(2): 103019, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38635394

RESUMO

In vitro cell culture serves as an efficient system for studying animal cell behavior in a controlled setting. Here, we present a 3D culture model for forming ruminant adipose organoids using stromal vascular fraction cells. We describe steps for forming cell spheroids and growing them on a Matrigel-coated surface. We then detail procedures for inducing organoids to undergo angiogenesis and adipogenesis followed by capillary sprouting. This protocol can be utilized to study the interaction between blood vessels and adipocytes. For complete details on the use and execution of this protocol, please refer to Yu et al.1.

8.
J Anesth ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441686

RESUMO

PURPOSE: More literature studies have reported that alfentanil is safe and effective for labor analgesia. However, there is no unified consensus on the optimal dosage of alfentanil used for epidural analgesia. This study explored the concentration at 90% of minimum effective concentration (EC90) of alfentanil combined with 0.075% ropivacaine in patients undergoing epidural labor analgesia to infer reasonable drug compatibility and provide guidance for clinical practice. METHODS: In this prospective, single-center, double-blind study, a total of 45 singleton term primiparas with vaginal delivery who volunteered for epidural labor analgesia were recruited. The first maternal was administered with 3 µg/mL alfentanil combined with 0.075% ropivacaine with the infusion of 10 mL of the mixture every 50 min at a background dose of 3 mL/h. In the absence of PCEA, a total of 15 mL of the mixture is injected per hour. The subsequent alfentanil concentration was determined on the block efficacy of the previous case, using an up-down sequential allocation with a bias-coin design. 30 min after epidural labor analgesia, the block of patient failed with visual analog score (VAS) > 3, the alfentanil concentration was increased in a 0.5 µg/mL gradient for the next patient, while the block was successful with VAS ≤ 3, the alfentanil concentration was remained or decreased in a gradient according to a randomized response list for the next patient. EC90 and 95% confidence interval were calculated by linear interpolation and prediction model with R statistical software. RESULTS: In this study, the estimated EC90 of alfentanil was 3.85 µg/mL (95% confidence interval, 3.64-4.28 µg/mL). CONCLUSION: When combined with ropivacaine 0.075%, the EC90 of alfentanil for epidural labor analgesia is 3.85 µg/mL in patients undergoing labor analgesia.

9.
Plant Cell Environ ; 47(6): 2192-2205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481108

RESUMO

Physiological water stress induced by low root temperatures might contribute to species-specific climatic limits of tree distribution. We investigated the low temperature sensitivity of root water uptake and transport in seedlings of 16 European tree species which reach their natural upper elevation distribution limits at different distances to the alpine treeline. We used 2H-H2O pulse-labelling to quantify the water uptake and transport velocity from roots to leaves in seedlings exposed to constant 15°C, 7°C or 2°C root temperature, but identical aboveground temperatures between 20°C and 25°C. In all species, low root temperatures reduced the water transport rate, accompanied by reduced stem water potentials and stomatal conductance. At 7°C root temperature, the relative water uptake rates among species correlated positively with the species-specific upper elevation limits, indicating an increasingly higher sensitivity to lower root zone temperatures, the lower a species' natural elevational distribution limit. Conversely, 2°C root temperature severely inhibited water uptake in all species, irrespective of the species' thermal elevational limits. We conclude that low temperature-induced hydraulic constraints contribute to the cold distribution limits of temperate tree species and are a potential physiological cause behind the low temperature limits of plant growth in general.


Assuntos
Temperatura Baixa , Raízes de Plantas , Especificidade da Espécie , Árvores , Água , Água/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Árvores/fisiologia , Árvores/metabolismo , Altitude , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Plântula/fisiologia , Plântula/metabolismo , Transporte Biológico , Estômatos de Plantas/fisiologia
10.
Environ Toxicol ; 39(5): 3026-3039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317508

RESUMO

Long noncoding RNAs have been reported to be involved in the development of breast cancer. LINC01572 was previously reported to promote the development of various tumors. However, the potential biological function of LINC01572 in breast cancer remains largely unknown. R language was used to perform bioinformatic analysis of The Cancer Genome Atlas data. The expression level of RNAs was examined by RT-qPCR. The effect of knocking down or overexpression LINC01572 in triple-negative breast cancer (TNBC) cell lines was evaluated by detecting cell proliferation, migrant action. RNA immunoprecipitation assay and RNA pull-down assay were performed to explore the regulatory relationship between LINC01572, EIF4A3, and ß-catenin. Bioinformatics analysis identifies LINC01572 as an oncogene of breast cancer. LINC01572 is over-expressed in TNBC tissues and cell lines, correlated with poor clinical prognosis in BC patients. Cell function studies confirmed that LINC01572 facilitated the proliferation and migration of TNBC cells in both vivo and vitro. Mechanistically, ß-catenin mRNA and EIF4A3 combine spatially to form a complex, LINC01572 helps transport this complex from the nucleus to the cytoplasm, thereby facilitating the translation of ß-catenin. Our findings confirm that LINC01572 acts as a tumor promoter and may act as a biomarker in TNBC. In addition, novel molecular regulatory relationships involving LINC01572/EIF4A3/ß-catenin are critical to the development of TNBC, which led to a new understanding of the mechanisms of TNBC progression and shows a new target for precision treatment for TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias de Mama Triplo Negativas/genética , RNA Mensageiro/genética , Linhagem Celular Tumoral , RNA , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
11.
Biomed Pharmacother ; 172: 116246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359487

RESUMO

Azithromycin, a commonly used macrolide antibiotic for treating chlamydial infections during pregnancy, has sparked investigations into its potential effects on offspring development. Despite these inquiries, there remains uncertainty about the specific impact of prenatal azithromycin exposure (PAzE) on offspring ovarian development and the precise "effect window". Pregnant mice, following clinical guidelines for azithromycin dosing, were orally administered azithromycin at different gestational stages [(gestational day, GD) 10-12 or GD 15-17], doses (50, 100, or 200 mg/kg·d), and courses (single or multiple). On GD 18, we collected offspring blood and ovaries to examine changes in fetal serum estradiol (E2) levels, fetal ovarian morphology, pre-granulosa cell function, and oocyte development. Multiple courses of PAzE resulted in abnormal fetal ovarian morphological development, disorganized germ cell nests, enhanced ovarian cell proliferation, and reduced apoptosis. Simultaneously, multiple courses of PAzE significantly increased fetal serum E2 levels, elevated ovarian steroidogenic function (indicated by Star, 3ß-hsd, and Cyp19 expression), disrupted oocyte development (indicated by Figlα and Nobox expression), and led to alterations in the MAPK signal pathway in fetal ovaries, particularly in the high-dose treatment group. In contrast, a single course of PAzE reduced fetal ovarian cell proliferation, decreased steroidogenic function, and inhibited oocyte development, particularly through the downregulation of Mek2 expression in the MAPK signal pathway. These findings suggest that PAzE can influence various aspects of fetal mouse ovarian cell development. Multiple courses enhance pre-granulosa cell estrogen synthesis function and advance germ cell development, while a single terminal gestation dose inhibits germ cell development. These differential effects may be associated with changes in the MAPK signal pathway.


Assuntos
Azitromicina , Ovário , Gravidez , Feminino , Camundongos , Animais , Azitromicina/toxicidade , Células da Granulosa , Reprodução , Células Germinativas
12.
Anal Chim Acta ; 1288: 342027, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220263

RESUMO

Most studies on MXene matrix composites for sensor development have primarily focused on synthesis and application. Nevertheless, there is currently a lack of research on how the introduction of different materials affects the sensing properties of these composites. The rapid development of MXene has raised intriguing questions about improving sensor performance by combining MXene with other materials such as polymers, metals and inorganic non-metals. This review will concentrate on the construction of MXene-based composites and explore ways to enhance their sensor applications. Specifically, this review describes why the introduction of materials to the system brings the advantage of low concentration and high sensitivity assays, as well as the MXene-based frameworks that have been recently investigated. Lastly, in order to capture the current trend of MXene-based composites in sensor applications and identify promising research directions, this review will critically evaluate the potential applications of newly developed MXene systems.

13.
Cell Metab ; 36(3): 511-525.e7, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232735

RESUMO

Myopia is characterized of maladaptive increases in scleral fibroblast-to-myofibroblast transdifferentiation (FMT). Scleral hypoxia is a significant factor contributing to myopia, but how hypoxia induces myopia is poorly understood. Here, we showed that myopia in mice and guinea pigs was associated with hypoxia-induced increases in key glycolytic enzymes expression and lactate levels in the sclera. Promotion of scleral glycolysis or lactate production induced FMT and myopia; conversely, suppression of glycolysis or lactate production eliminated or inhibited FMT and myopia. Mechanistically, increasing scleral glycolysis-lactate levels promoted FMT and myopia via H3K18la, and this promoted Notch1 expression. Genetic analyses identified a significant enrichment of two genes encoding glycolytic enzymes, ENO2 and TPI1. Moreover, increasing sugar intake in guinea pigs not only induced myopia but also enhanced the response to myopia induction via the scleral glycolysis-lactate-histone lactylation pathway. Collectively, we suggest that scleral glycolysis contributes to myopia by promoting FMT via lactate-induced histone lactylation.


Assuntos
Histonas , Miopia , Animais , Cobaias , Camundongos , Histonas/metabolismo , Esclera/metabolismo , Miopia/genética , Miopia/metabolismo , Ácido Láctico/metabolismo , Glicólise , Hipóxia/metabolismo
14.
Sci Total Environ ; 912: 169169, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072260

RESUMO

The measurement of carbon and carbon-related ecosystem services (CCESs) has garnered considerable global attention, primarily due to dual­carbon goals, which are crucial for the rational allocating of ecosystem service (ES) resources and the enhancement of terrestrial carbon sinks. This study developed a novel research framework on CCESs to quantitatively measure carbon storage (CS), food production (FS), habitat quality (HQ), soil conservation (SC), and water yield (WY), and examined the spatiotemporal patterns of the supply-demand and trade-off/synergy processes related to CCESs in the Huaihe River Ecological Economic Belt (HREEB). The findings are as follows: (1) From 2000 to 2020, the supply-demand of the CCESs generally increased, except for carbon storage and food demand. Overall, the supply level of the CCESs exceeds the demand level, with a median ratio of supply and demand ratio (ESDR) of 1.13. (2) During the study period, the synergy relationship of the CCESs is mainly determined by the supply side of the CS-HQ and CS-SC, while on the demand side, it is determined by the CD- FD. And the ESDR of all C-related ecosystem services showed a significant synergy strengthening with CS in the HREEB. (3) Spatially, "high-low" spatial matching of the ESDR decreased, suggesting a gradual reduction in the spatial mismatch of CCESs. (4) We identified seven ecological functional zones and proposed corresponding strategies for promoting ecological management. Our research emphasized the spatiotemporal patterns of supply and demand imbalance in CCESs and the spatial optimization paths of trade-offs/synergies, providing valuable insights for achieving regional dual­carbon goals.

15.
Diabetes ; 73(1): 57-74, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847900

RESUMO

Chronic inflammation promotes pancreatic ß-cell decompensation to insulin resistance because of local accumulation of supraphysiologic interleukin 1ß (IL-1ß) levels. However, the underlying molecular mechanisms remain elusive. We show that miR-503-5p is exclusively upregulated in islets from humans with type 2 diabetes and diabetic rodents because of its promoter hypomethylation and increased local IL-1ß levels. ß-Cell-specific miR-503 transgenic mice display mild or severe diabetes in a time- and expression-dependent manner. By contrast, deletion of the miR-503 cluster protects mice from high-fat diet-induced insulin resistance and glucose intolerance. Mechanistically, miR-503-5p represses c-Jun N-terminal kinase-interacting protein 2 (JIP2) translation to activate mitogen-activated protein kinase signaling cascades, thus inhibiting glucose-stimulated insulin secretion (GSIS) and compensatory ß-cell proliferation. In addition, ß-cell miR-503-5p is packaged in nanovesicles to dampen insulin signaling transduction in liver and adipose tissues by targeting insulin receptors. Notably, specifically blocking the miR-503 cluster in ß-cells effectively remits aging-associated diabetes through recovery of GSIS capacity and insulin sensitivity. Our findings demonstrate that ß-cell miR-503-5p is required for the development of insulin resistance and ß-cell decompensation, providing a potential therapeutic target against diabetes. ARTICLE HIGHLIGHTS: Promoter hypomethylation during natural aging permits miR-503-5p overexpression in islets under inflammation conditions, conserving from rodents to humans. Impaired ß-cells release nanovesicular miR-503-5p to accumulate in liver and adipose tissue, leading to their insulin resistance via the miR-503-5p/insulin receptor/phosphorylated AKT axis. Accumulated miR-503-5p in ß-cells impairs glucose-stimulated insulin secretion via the JIP2-coordinated mitogen-activated protein kinase signaling cascades. Specific blockage of ß-cell miR-503-5p improves ß-cell function and glucose tolerance in aging mice.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , MicroRNAs , Humanos , Camundongos , Animais , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
16.
J Chromatogr A ; 1714: 464580, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38154349

RESUMO

It is important to recycle the bovine blood discarded at slaughter and develop it into high value-added bovine serum products. Biomimetic affinity chromatography (BiAC) resins have been developed to specifically purify bovine serum immunoglobulin G (Bs-IgG). The BiAC strategy was used to screen the resins with the best purification effect on Bs-IgG. Four resins with specificity for Bs-IgG adsorption were selected from 90 BiAC resins. Finally, BiAC-A5-87 was selected and used to purify Bs-IgG based on the results of SDS-PAGE and BCA protein quantification analysis. The adsorption capacity and purity of BiAC-A5-87 were 32.79 ± 3.57 mg/mL and 85.9 ± 1.21 % for Bs-IgG, respectively. The total protein recovery rate of Bs-IgG purified by BiAC-A5-87 was 89.78±3.52 %. The resin of BiAC-A5-87 column was recycled in 40 breakthrough cycles, and its Bs-IgG adsorption efficiency decreased by less than 10 %. After soaking BiAC-A5-87 in 1.0 moL NaOH solution for 64 h, its adsorption capacity for Bs-IgG was almost the same as that before soaking. The development of waste bovine serum not only realizes the utilization of blood resources and produces high economic benefits but also reduces the pollution of the environment.


Assuntos
Biomimética , Imunoglobulina G , Imunoglobulina G/metabolismo , Cromatografia de Afinidade/métodos , Soro/metabolismo , Adsorção
17.
Adv Sci (Weinh) ; 11(10): e2305100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145961

RESUMO

Molecular diodes are of considerable interest for the increasing technical demands of device miniaturization. However, the molecular diode performance remains contact-limited, which represents a major challenge for the advancement of rectification ratio and conductance. Here, it is demonstrated that high-quality ultrathin organic semiconductors can be grown on several classes of metal substrates via solution-shearing epitaxy, with a well-controlled number of layers and monolayer single crystal over 1 mm. The crystals are atomically smooth and pinhole-free, providing a native interface for high-performance monolayer molecular diodes. As a result, the monolayer molecular diodes show record-high rectification ratio up to 5 × 108 , ideality factor close to unity, aggressive unit conductance over 103 S cm-2 , ultrahigh breakdown electric field, excellent electrical stability, and well-defined contact interface. Large-area monolayer molecular diode arrays with 100% yield and excellent uniformity in the diode metrics are further fabricated. These results suggest that monolayer molecular crystals have great potential to build reliable, high-performance molecular diodes and deeply understand their intrinsic electronic behavior.

18.
Parasite ; 30: 55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084936

RESUMO

Cystic echinococcosis (CE) is a global zoonotic disease caused by Echinococcus granulosus, posing a great threat to human and animal health. MiRNAs are small regulatory noncoding RNA involved in the pathogenesis of parasitic diseases, possibly via exosomes. Egr-miR-71 has been identified as one of the miRNAs in the blood of CE patients, but its secretory characteristics and functions remains unclear. Herein, we studied the secretory and biological activity of exosomal egr-miR-71 and its immunoregulatory functions in sheep peripheral blood mononuclear cells (PBMCs). Our results showed that egr-miR-71 was enriched in the exosome secreted by protoscoleces with biological activity. These egr-miR-71-containing exosomes were easily internalized and then induced the dysregulation of cytokines (IL-10 and TNF-α), nitric oxide (NO) and key components (CD14 and IRF5) in the LPS/TLR4 pathway in the coincubated sheep PBMCs. Similarly, egr-miR-71 overexpression also altered the immune functions but exhibited obvious differences in regulation of the cytokines and key components, preferably inhibiting proinflammatory cytokines (IL-1α, IL-1ß and TNF-α). These results demonstrate that exosomal egr-miR-71 is bioactive and capacity of immunomodulation of PBMCs, potentially being involved in immune responses during E. granulosus infection.


Title: Caractérisation comparative du microARN-71 des exosomes d'Echinococcus granulosus. Abstract: L'échinococcose kystique (EK) est une maladie zoonotique mondiale causée par Echinococcus granulosus, représentant une grande menace pour la santé humaine et animale. Les miARN sont des petits ARN régulateurs non codants impliqués dans la pathogenèse des maladies parasitaires, éventuellement via les exosomes. Egr-miR-71 a été identifié comme l'un des miARN présents dans le sang des patients atteints d'EK, mais ses caractéristiques et fonctions sécrétoires restent floues. Ici, nous avons étudié l'activité sécrétoire et biologique du egr-miR-71 exosomal et ses fonctions immunorégulatrices dans les cellules mononucléées du sang périphérique (CMSP) de mouton. Nos résultats ont montré qu'egr-miR-71 était enrichi dans l'exosome sécrété par les protoscolex ayant une activité biologique. Ces exosomes contenant egr-miR-71 ont été facilement internalisés et ont ensuite induit la dérégulation des cytokines (IL-10 et TNF-α), de l'oxyde nitrique (NO) et des composants clés (CD14 et IRF5) de la voie LPS/TLR4 dans les CMSP de mouton co-incubées. De même, la surexpression d'egr-miR-71 a également modifié les fonctions immunitaires mais a montré des différences évidentes dans la régulation des cytokines et des composants clés, inhibant de préférence les cytokines pro-inflammatoires (IL-1α, IL-1ß et TNF-α). Ces résultats démontrent que l'egr-miR-71 exosomal est bioactif et possède une capacité d'immunomodulation des CMSP, potentiellement impliquée dans les réponses immunitaires lors d'une infection à E. granulosus.


Assuntos
Equinococose , Echinococcus granulosus , Exossomos , MicroRNAs , Animais , Humanos , Citocinas/genética , Equinococose/veterinária , Equinococose/parasitologia , Echinococcus granulosus/genética , Exossomos/metabolismo , Leucócitos Mononucleares , MicroRNAs/genética , Ovinos , Fator de Necrose Tumoral alfa
19.
Front Plant Sci ; 14: 1175812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941666

RESUMO

The ecological restoration of saline land in the Yellow River Delta is essential for the sustainability of this region. Halophytic species, like Suaeda salsa, are critical for the restoration process. However, potential differences in traits of heteromorphic seeds collected from the intertidal zone and inland condition have been largely overlooked. The seeds were analyzed for hardness, nutrient elements, and secretions, while structural differences were observed under a stereomicroscope. Germination percentages of the different seed types and subsequent seedling growth were also recorded. Our study found that the black seeds from intertidal zone had the highest hardness when compared to the three other types of seeds. Nutrient analysis revealed that brown seeds had a higher iron (Fe) content than black seeds. Accordingly, brown seed embryos were greener compared to their black seed counterparts due to the iron's role in chlorophyll synthesis. Our results also revealed that brown seeds secreted greater amounts of exudates than black seeds. Finally, both the intertidal brown seeds and the inland-grown brown seeds had higher germination percentages and better early seedling growth than the corresponding black seeds. The differential characteristics between dimorphic seeds and seedlings may influence their environmental adaptation in different saline environments.

20.
Cancer Biomark ; 38(4): 583-593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980648

RESUMO

BACKGROUND: Although there are many treatments for Multiple myeloma (MM), patients with MM still unable to escape the recurrence and aggravation of the disease. OBJECTIVE: We constructed a risk model based on genes closely associated with MM prognosis to predict its prognostic value. METHODS: Gene function enrichment and signal pathway enrichment analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, univariate and multivariate Cox regression analysis, Kaplan-Meier (KM) survival analysis and Receiver Operating Characteristic (ROC) analysis were used to identify the prognostic gene signature for MM. Finally, the prognostic gene signature was validated using the Gene Expression Omnibus (GEO) database. RESULTS: Thirteen prognostic genes were screened by univariate Cox analysis and LASSO regression analysis. Multivariate Cox analysis revealed risk score to be an independent prognostic factor for patients with MM [Hazard Ratio (HR) = 2.564, 95% Confidence Interval (CI) = 2.223-2.958, P< 0.001]. The risk score had a high level of predictive value according to ROC analysis, with an area under the curve (AUC) of 0.744. CONCLUSIONS: The potential prognostic signature of thirteen genes were assessed and a risk model was constructed that significantly correlated with prognosis in MM patients.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Prognóstico , Área Sob a Curva , Bases de Dados Factuais , Estimativa de Kaplan-Meier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA